E protein silencing by the leukemogenic AML1-ETO fusion protein.
نویسندگان
چکیده
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 15% of acute myeloid leukemia (AML) cases. This study shows that AML1-ETO, as well as ETO, inhibits transcriptional activation by E proteins through stable interactions that preclude recruitment of p300/CREB-binding protein (CBP) coactivators. These interactions are mediated by a conserved ETO TAF4 homology domain and a 17-amino acid p300/CBP and ETO target motif within AD1 activation domains of E proteins. In t(8;21) leukemic cells, very stable interactions between AML1-ETO and E proteins underlie a t(8;21) translocation-specific silencing of E protein function through an aberrant cofactor exchange mechanism. These studies identify E proteins as AML1-ETO targets whose dysregulation may be important for t(8;21) leukemogenesis, as well as an E protein silencing mechanism that is distinct from that associated with differentiation-inhibitory proteins.
منابع مشابه
Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways
E2A is a member of the E-protein family of transcription factors. Previous studies have reported context-dependent regulation of E2A-dependent transcription. For example, whereas the E2A portion of the E2A-Pbx1 leukemia fusion protein mediates robust transcriptional activation in t(1;19) acute lymphoblastic leukemia, the transcriptional activity of wild-type E2A is silenced by high levels of co...
متن کاملMultivalent binding of the ETO corepressor to E proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery.
E proteins are a family of helix-loop-helix transcription factors that play important roles in cell differentiation and homeostasis. They contain at least two activation domains, AD1 and AD2. ETO family proteins and the leukemogenic AML1-ETO fusion protein are corepressors of E proteins. It is thought that ETO represses E-protein activity by interacting with AD1, which competes away p300/CBP hi...
متن کاملTargeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells.
In t(8;21) acute myeloid leukemia (AML), the AML1/ETO fusion protein promotes leukemogenesis by recruiting class I histone deacetylase (HDAC)-containing repressor complex to the promoter of AML1 target genes. Valproic acid (VPA), a commonly used antiseizure and mood stabilizer drug, has been shown to cause growth arrest and induce differentiation of malignant cells via HDAC inhibition. VPA caus...
متن کاملRUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis.
The 8;21 translocation, which involves the gene encoding the RUNX family DNA-binding transcription factor AML1 (RUNX1) on chromosome 21 and the ETO (MTG8) gene on chromosome 8, generates AML1-ETO fusion proteins. Previous analyses have demonstrated that full-length AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. More recently, we have identified an al...
متن کاملAML1/ETO Oncoprotein Is Directed to AML1 Binding Regions and Co-Localizes with AML1 and HEB on Its Targets
A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 305 5688 شماره
صفحات -
تاریخ انتشار 2004